以认真诚恳的态度所写的教学反思才会让自己有进步的空间,写教学反思时,老师都需要有着较为清晰的逻辑思维,下面是优文档网小编为您分享的五年级上数学教学反思推荐7篇,感谢您的参阅。
五年级上数学教学反思篇1
?找次品》是人教版小学数学五(下)数学广角的教学内容,这个内容的主要目的向学生渗透一种优化思想,同时培养学生的推理能力。第一次接触到这样的内容让我不知所措,连自己都看不懂的内容,学生能听懂吗?于是我认真的阅读了教材及教学参考书,在认真思考以后,确定了自己的教学方案。在教学过程中,我首先让孩子们明白两点:
第一、当物体放在天平的两端时会出现平衡和不平衡两种情况;
第二、要想通过天平的平衡与不平衡找到次品,那么天平两端的物体个数必须相同。
理解了这两点以后,首先和孩子们一起体会3个物品中找1个次品至少称几次能保证找到次品?并提问:还有几个也能1次就能找到次品?让孩子们知道2~3个物品只需要1次就够了。接着学习4个,首先问孩子们能不能1次就找到次品,孩子们回答能够。是呀,在运气好的情况下是能够找到的但是能不能保证找到呢?这样让孩子们在思考的过程中体会到了要考虑运气最坏的时候也能找到才叫要保证。就4个的分法就多了:(2,2)、(1、1、2),这两种分法都需要2次才能找到。接着教学8个,9个,都只需要2次就能保证找到,到了10个就需要3次了……,在教学的过程中,给学生建立模型:2~3个——1次,4~9个——2次,9~27个——3次,这样就能让孩子很快的确定称的次数,然后根据次数来确定的自己的方案,这样的话,学生确定方案时就不局限于一定要按照书上的方案:能平均分成3份的就平均分成3份来称,不能平均分成3份的:2组相等,另一组与之相差1,还有很多种分法。
这样的教学我感觉学生接受起来还是比较容易,孩子们也很感兴趣。
五年级上数学教学反思篇2
“分数和除法的关系”主要引导学生探索并理解分数与除法的关系,教材呈现的直观的情境图:把3块饼平均分给4个小朋友,每人分得多少块?分饼的情境,对于五年级的学生来说相当熟悉,不但生活中有,以前的课本知识中也有,生活、学习的经验体会到和以前分饼的问题有相同之处,都是用饼分给一些小朋友,每个小朋友可以分得多少个饼的问题,算式是3÷4=?,有直观的情境图帮助学生思考,有学生知道这个算式的结果是3/4块。借机可以让全体学生直观地体会结果不满1时可以用分数表示,直观帮助学生初步体会分数与除法的关系。五年级数学下册分数和除法教学反思
验证“3÷4是否是3/4块,也就是每人分得是3/4块饼吗”是这堂课的难点,操作能帮助学生理解。方法一是一个饼一个饼地分,将第一个饼平均分成4份,每个小朋友分得其中的一份,也就是分得1/4个饼,用同样的方法分别将第二、第三个饼也分,每个小朋友还是分得1/4块饼,三次一共分得3个1/4块饼,合起来是3/4块饼;方法二是三个饼叠在一起分,平均分成4份,每个小朋友分得其中的一份,也就是每人分得3块的1/4,有3个1/4块饼,即3/4块。操作、图像都是直观的不同手段和形式,同样可以帮助学生理解“3/4块饼”得到的过程,形成丰富、准确的表象。
观察等式3÷4=3/4、3÷5=3/5可以发现分数和除法之间的关系,有了板书的直观支撑,学生很容易知道被除数相当于分数的分子,除数相当于分数的分母,除号相当于分数的分数线;有了板书的直观支撑,学生很容易知道除法与分数的区别,除法是一种四则运算之一,而分数是一种数,相对于自然数、小数而言的另外一种形式的数。在理解、掌握分数与除法关系的基础上,通过练习让学生进一步沟通分数与除法之间的关系,形成相应的技能。如,先将被除数改写成分子,后将除数改写成分母来的比较简单,且不容易出错等等。板书是可以一直留在学生视线中的直观媒体,便于学生反复观察、比较,可以帮助学生获得相应的结论。
情境图、动手操作、直观演示、板书这些形式和手段,可以帮助学生直观地理解知识和运用知识。“试一试”是让学生把低级单位的单名数换算成高级单位的单名数,题目:7分米=()/()米23分=()/()。学生交流中有两种思路,一是运用分数的意义来解决问题的,把1米看做单位“1”平均分成10份,7分米是这样的7份,所以7分米=7/10米;二是低级单位换算成五年级数学下册分数和除法教学反思高级单位时,用除以进率的方法解决问题,即7÷10=7/10(米)。运用分数的意义和规律准确完成单位之间的换算,学生在思考时是离不开直观的支撑的。直观是学生理解的基础,直观是沟通知识的桥梁。
五年级上数学教学反思篇3
感觉本课最大难点是例题教学,而例题教学中的最大难点又在于花落在每个人手里的可能性与落在男生组(或女生组)手里的可能性的关系。
尝试分析了一下例题难在何处?主要原因是这里男生组与女生组表演的可能性正好相等。难以激发学生探究欲望。有的学生错误地认为游戏中只有男生组和女生这样,所以男生组(或女生组)获胜的可能性就应该是1/2。(因为有两个组,男生组和女生组分别占其中一份)。例题如果采用直观形象的色块帮助理解就容易突破难点,但主题图中人数太多,用转盘画图示来表示不方便。针对以上原因,我在教案设计时首先将观察人数由例题的18人减少为(6人),这样绘制转盘时就能既快捷又方便学生观察探究了;其次,我将例题的等可能性事件。当我对第一排的同学宣布完游戏规则后,全班男生大呼“不公平”。此时,我就紧抓其“不公平” 的心理引导他们深入思考,最终从教学可能性的角度发现其概率的不同,男生组表演节目的可能性是4/6,女生只有2/6。
困惑:为什么教材例题要以击鼓传花为素材来研究男生组与女生组的可能性呢?学生生活中很少是男生组或女生组为单位来进行表演的,他们缺乏这样的游戏经验。其次,为什么不能直接采用直观形象的转盘作为研究素材呢。
学生们的疑问与争议:在课后,要求学生将可能知识与现实生活相联系。他们谈到了商场购物后的促销活动等级常常是分散重复排列的,如:一等奖、二等奖、三等奖、一等奖、二等奖、三等奖……如果把转盘中所有一等奖的区域都集中到一起,那么这时获奖的可能性是不是会有变大呢?近1/2的学生指出:可能性变大。因为以往转动转盘时,由于获奖区域较小,所以指针很容易因偏离获奖区域一点而与大奖失之交臂。可如果将其放在一起后,发生偏离的可能性会变小,那么或奖的可能性就增加了。还有近1/2学生从面积的大小来思考,认为可能性不变。当然也有少数“两面派”,他们认为从理论上来说,获奖可能性不变,但在实际操作中,应该可能性增加。通过讨论,最终大家达成共识,获奖可能性的大小应该不变。
五年级上数学教学反思篇4
说,我们会让他们尝试接受——解答x在后面这解方程就是等号二边同时加上x,再类方程的解答方法,新教材则是借用天平游戏使学生首先感悟“等式”,知道“等式两边都加上或减去同一个数,等式仍然成立”这个规律,这样才能从真正意义上很好地揭示方程的意义,进而学会解方程,还能使之与中学的移项解方程建立起联系。
左右换位置,再二边减一个数,真有点麻烦了。而且有的学生还很难掌握这样方法。但是用减法和除法各部分之间的关系解答就比较简单。
2、内容看似少实际教得多。难度下降后,在教学前,由于我个人比较偏好于传统的教学方法,总觉得用等式的性质解方程比较麻烦。为了转变自己的教学思想,更新教学观念,我深入了解新教材的涵意——方程是一个一个等式,是一个数学模型,是抽象的,而天平是一个具体的东西,利用天平这样的事物原形来揭示等式的性质,把抽象的解方程的过程用形象化的方式表现出来,使学生更好的理解解方程的过程是一个等式的恒等变形。并能站在“学生是学习的主人”和“教师是学习的组织者、引导者与合作者”的这一角度上,为学生创设学习此课的情境,通过直观演示,充分给学生提供小组交流的机会。在教学的整个过程中,重点突出了“等式”与“等式两边都加上或减去同一个数,等式仍然成立”这个规律,不断对孩子们进行潜移默化地渗透,促使绝大部分的学生都能灵活地运用此规律来解方程。从而,我惊喜地发现孩子们的学习活动是那么的有滋有味,进而使我很顺利地就完成了本课的教学任务。
通过近段时间的学习,发现学生对这种方法掌握的很好,而且很乐意用等式的性质来解方程,但同时让我感到了一些困惑:
1、从教材的编排上,整体难度下降,有意避开了,形如:45—x=2356÷x=8等类型的题目。把用等式解决的方法单一化了。在实际教学中,如果用等式性质来解就比较麻烦。很显然这种方法存在着目前的局限性。对于好的学生来看起来教师要教的内容变得少了,可以实际上反而是多了。教师要给他们补充x前面是除号或减号的方程的解法。
总之,要使孩子们爱学、乐学,教师就必须更新教学观念,充分理解教材,并要懂得为教学去创设合理情境,从新的理念、新的角度以及学生的角度去重新定位自己的教学模式。灵活处理教材中的问题,鼓励学生算法的多样化,真正体现课改精神——“人人学有价值的数学,人人都能获得必须的数学;不同的人在数学上得到不同的发展》。
五年级上数学教学反思篇5
本节课的探究交流主要体现在“含有未知数的等式,称为方程”的这一概念获取过程中,在这个过程中我首先是让学生通过观察天平“平衡现象→不平衡到平衡→不确定现象”三个直观活动,抽象出相关的数学式子,再通过观察这些数学式子的特征,抽象出方程的概念,即由“式子→等式→方程”的抽象过程,然后通过必要的练习巩固加深对方程概念的理解和应用。通过这一系列的观察、思考、分类、归纳突破本课的重难点。在这几个环节中有这样几个特点:
1、用天平创设情境直观形象,有助学生理解式子的意思
等式是一个数学概念。如果离开现实背景出现都是已知数组成的等式,虽然可以通过计算体会相等,但枯躁乏味,学生不会感兴趣。如果离开现实情境出现含有未知数的等式,学生很难体会等式的具体含义。天平是计量物体质量的工具,但它也可以通过平衡或者不平衡判断出两个物体的质量是否相等,天平图创设情境,利用鲜明的直观形象写出表示相等的式子和表示不相等的式子,可以帮助学生理解式子的意思,也充分利用了教材的主题图。
2、对方程的认识从表面趋向本质
(1)在分类比较中认识方程的主要特征。在教学过程中,学生通过观察和操作得到了很多不同的式子,然后让学生把写出的式子进行分类。先让学生独立思考,再在组内交流,讨论思考发现式子的不同,分类概括。有人可能先分成等式和不是等式两类,再把等式分成不含未知数和含有未知数两种情况;有人可能先分成不含未知数和含有未知数两类,再把含有未知数的式子分成等式和不是等式两种情况。尽管分的过程不完全一致,但最后都分出了含有未知数的等式,经过探索和交流,认识方程的特征,归纳出方程的意义。
(2)要体会方程是一种数学模型。“含有未知数的等式”描述了方程的外部特征,并不是本质特征。方程用等式表示数量关系,它由已知数和未知数共同组成,表达的相等关系是现象、事件中最主要的数量关系。要让学生体会方程的本质特征。在教学过程中,通过观察天平的相等关系(如左盘中是100克的杯子和x克水右盘中是250克砝码,天平平衡,解释方程的'具体含义),感受方程与日常生活的联系,体会方程用数学符号抽象地表达了等量关系,对方程的认识从表面趋向本质。
3、在“看”“说”和“写”中体会式子
当方程的意义建立后,我让学生观察一组式子判断它们是不是方程,通过判断说明这些式子为什么是“方程”,为什么“不是方程”,体会方程与等式的关系,加深对方程意义的理解。再让学生自己写出一些方程,展示自己写的方法。
五年级上数学教学反思篇6
教学完一一列举的解题策略以后,感觉有许多问题值得我去思考,概括起来,有以下几方面:
一、思考“策略”
曾经听过专家这样解释策略:“策略”指计策和谋略,是人们面对具体问题做出的基本判断。还有一位教材主编这样解读策略:“策略”比“方法”更上位,“方法”可以从外部输入,可以通过教师的讲解示范传授给孩子,而“策略”是一种思想意识,无法传授,需要孩子通过在具体问题解决的过程中去体验,去感悟。
所以,在我心里,对策略的定位为: 在解决问题的教学中,孩子对数量关系的阐述可以不十分规范地表述,能够结合具体情境和自身经验描述出思考过程就可以,但需要我们有意识地引导孩子对各种方法进行比较,经过一定的数学思考,形成解决问题的策略。
二、思考“起点”
思考孩子的知识起点很重要!因此在调整教案前,我首先思考了四年级孩子的知识起点,很欣喜地发现在他们一年级时已经学习了分与合,二三年级时能用数字组数,四年级上学期学会了“搭配的规律”。
原来,孩子们几乎每个学期都在用“一一列举”的策略解决着一些简单的问题,而且在不断的具体的应用过程中,孩子们已经体会着一一列举的基本思考方法,知道列举要注意有序,要不重复、不遗漏地进行思考,但我想,到现在为止,这只是一种无意识的解题行为。
如何让这样的思考更深入、更系统,便是我今天课堂上的任务了。
三、思考“过程”
在导入时,我借助游戏让孩子们感性认识“一一列举”策略的特征——有序思考。接着出示例1,孩子们通过摆小棒、列表、画图等方法很顺利地解决了,而我侧重让孩子们在比较自己的探究成果与同伴探究成果中,加深“有序、不重复、不遗漏”这三个关键词,我有意识板书这三个关键词,强调学生要做好并注意这几个问题。
还有一点自我感觉有所改进的地方是:在整个教学过程中,每当孩子们用一一列举的方法解决问题之后,我都会有意识地引导他们对解决问题的过程进行回顾和反思,而且各有侧重。
五年级上数学教学反思篇7
由于分数是学生刚开始认识的一种新的数,因此在教学中应注意从学生的认识特点出发,多联系实际,多举实例,结合学生已有的知识基础和生活经验,通过丰富的操作活动,加强感性认识,让学生亲身体验,积极探索,体会新旧知识的联系,为以后学生在分数的认识由感性认识到理性认识的飞跃打好基础。
课堂是学生主动参与,动手实践,探究交流数学知识,构建自己有效数学理解的场所。所以本课我力求做到了师为主导,生为主体,疑为主轴,动为主线。把学生推向学习的前沿,把学习的权力还给了学生,把反思与发现的空间和时间也给了学生,把发现的权利交给了学生。为此本节课教学中,我有如下几点体会:
一、加强数学学习与生活的联系。
本课首先创设野餐活动时分食品的生活情景,分食品是学生生活中经常遇到的事,我从学生的生活经验和已有知识出发,充分利用现代教学技术,再现生活中“分蛋糕”的场景,让学生从感性上认识了“平均分”,为下面教学几分之一的意义作了铺垫。并引导学生结合具体情景认识二分之一,体会分数产生于实际生活,知道二分之一是分数。
二、加强直观教学,降低认知难度
分数的知识是学生第一次接触,是在整数认识的基础上进行的,是数的概念的一次扩展。对学生来说,理解分数的意义有一定的困难。而加强直观教学可以更好地帮助学生掌握概念,理解概念。在本节课的教学中,我充分重视学生对学具的操作,通过折纸让学生对分数的含义有一个直观的认识,充分利用多媒体课件的演示来加强直观教学,让学生加深对分数概念含义的理解,降低了对分数概念理解上的难度。
三、自主学习,培养创新能力
在认识蛋糕的二分之一之后,我让学生用长方形折一折,涂一涂,认一认,通过交流比较进一步理解二分之一的含义。在折一折的环节中,学生的不同的折法都能表示长方形的二分之一,为什么这里面存在一个数学里面的求同的思想。求同存异,它有不同的地方,折法不同,那有没有相同的地方呢同学们通过思考,他们给出答案,它们都是对折的,都是平均分成两份。
用不同的图形折出不同的分数,为学生提供开放的思维空间,让他们联系已有的经验和数学知识,主动探求折法,得到更多的分数,充分展示学生思考,探索,交流的活动。在群体中交流多种折法,既尊重了学生解决问题的个人策略,又让学生体验解决问题策略的多样性,使学生的创新能力得以释放和发展,放手让学生自主创造分数,顺应学生好表现的心理特点,彰显了学生个性,学生通过活动进一步加深对几分之一的理解,并在活动中培养了学生创新意识和学习的自信心。学生做完分数后,我拿了三个不同图形的四分之一,不同图形为什么都可以表示四分之一呢根据孩子们的经验,他们知道,它们都是把图形平均分成了四份,图形不同是没有关系的,只要平均分成了四份,每一份都是它的四分之一。通过两个层次的比较,至少给同学们留下了这样的印象,要表示几分之一,怎样对折没关系,什么图形没关系,只要把一个东西平均分成若干份,表示这样的一份就是它的几分之一。
通过小组间的讨论与合作,得出结论,不仅达到了强调“平均分”的目的,而且思考的过程中,充分尊重和发挥了学生的主体作用,促进学生自主学习,并在教师的恰当引导下把探索过程引向深入,从而使学生操作,思维,语言相结合,深刻的体会分数的含义,这样的设计还有利于学生的动手能力和概括等能力得到锻炼,也使学生去体会与他人合作的力量和提取别人的长处。我想孩子们在初步认识几分之一的时候,如果能通过这层层的活动和比较,对于分数的本质问题有所感悟的话,对孩子以后的分数学习会有很大的帮助。
会计实习心得体会最新模板相关文章: